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I. Introducgion 

Ignoring spins, sthe canonical procedure for introducing a 

static magnetic field into the electronic 

I 

a 
is to make a substitution for 

3 
where A is the vector potential and q is the electronic charge 

( 7 0 )  . This substitution yields the Hamiltonian 

where 

and 

Tlie replacement (2) ie said to be a gauge invariant one in 

that a subsequent gauge transformation on A: 
- -1 

' Here A can be any real function of the particle coord4nates. 
In what follows' we will refer to a pwoper gauge traneformation if h 
takee the special form A a bc3~) 1 
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so that (6) becomes 

corresponding to a real electromagnetic gauge transformation 

- - - - I - - -  

can be undone by a unitary transformation and hence has no effect on 

the energy eigenvalues. Namely, the effect of the transformation (6) 2 

is to replace H by 

where H1 and H l  are derived from H 

( 6 ) .  One then readily shows that 

and H2 by the substitution 1 

where 

i o  h- 
FG u =  e ( 9) 

1 ns 
is clearly a unitary operator isvwe assume , iL is real 

Usually the main point made in deriving (8) is the proof that 

c C 

which, of course, is true. We would like here to emphasize another 

point - the proof of (8) also involves showing that 
y + v u  = v  (3 

this is trivial. For a nono'local potential 
a'--. c) +; 3 lt,c3;---3"> &;--- J?: v +  "= j t4-&IvI"c, - - - - - . . -  

2This last statement assumes that the unitary transformation is con- 
sistent with boundary and regularity conditions. See y, Ahranov and 
D. Bohm, Phys, Rev. 1'1'5', 485 (1959), and R. C, Jaklevic, et al, 
Phys. Rev, Lett 2, 274 (1964). - 
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it is false. We discuss this further in the next section. 

- - - - - -  

11. Non-Local Potentials 

First of all let us note that such potentials do occur both 

explicitly and implicitly: 
3 (A) In the coupled (unrestricted) Hartree-Fock method 

(B) 
3 In the uncoupled Hartree-Fock method 

(C) In any one-electron theory for which the zero field one- 

electron orbitals are not all eigenfunction of a single local one- 

electron Hamiltonian . 4 

Now for a non-local potential, (#  ) implies 

which is in general false (unless is local, i.e., 

Thus we conclude that if contains a non-local potential then when 

we introduce a magnetic field we must, in addition to the 

Ha 

substitution (2), 
- - - - - -  
See A. Dalgarno, Adv. in Phys. - 11, 281 (1962) for an explanation of 
the terminology . 
Given N orthogonal one-electron- functions q ~ ,  then in general 

there is no local \r such that (- f l ) Y ~ =  %\I, p+ 4 L 
However, one can always find a non-local * 
J. Chem. Phys. to be published), 

(see S.T. Epstein, 
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5 make a subs t i t u t ion  

VJg v.4 

i n  such a way t h a t  under a fu r the r  gauge transformation 

, 
/One immediate consequence of t h i s  d i scuss ion  i s  t h a t  t h e  

uncoupled Hartree-Fock approximation i s  i n t r i n s i c a l l y  not gauge 

invariant  s ince  t h e  non-local po ten t i a l  i s  f ixed independently of 

t he  magnetic f i e l d .  i 

Further,  o ther  one-electron theor ies  of magnetism (Pople, Hameka, 

Karplus, e t c . )  may or  may no t  be i n t r i n s i c a l l y  gauge invar ian t  

depending on the  choice of unperturbed o r b i t a l s  496 , 

On the other  hand (as  is known, a t  least f o r  spec ia l  cases7)" the  \ 
coupled (unres t r ic ted)  Hartree-Fock theory 

gauge transformations j u s t  because t h e  non-local po ten t i a l  _does 

respond t o  the  magnetic f i e l d .  

invar ian t  t o  proper 

We w i l l  give an elegant  proof fof  t h i s  
- - - - - -  

There a re  many ways of doing t h i s .  We w i l l  not discuss  t h i s  

fur ther  here. See Y. Yamaguchi, Phys. Rev. 95, 1628 (1957), 

sect ion 4 and references given there .  

Such theories  o f t en  involve many other  approximations (See f o r  

example t h e  exchange between H. F. Hameka and J. A. Pople, J. Chem. 

Phys, 37, 3008, 3009 (1962)), It would be i n t e r e s t i n g  t o  test these  

on the  one-electron 2-coulomb-center problem where accurate  

ana ly t i ca l  ca lcu la t ions  seem feas ib l e ,  

See fo r  example, R. M. Stevens, R. M, P i t z e r ,  and W. N. Lipscomb, 

J. Chem. Phys. 38, 550 (1963). 
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in the next section. A direct proof follows from the observation that 

the non-local part of the one-electron Hamiltonian. ts+ jus* 

Now under the transformation (8) wave functions change according to 

I 

t jxc?I 
2 

so that, specializing to a one-electron problem W i # h  e 
we have 

or 

111. Gauge Invariance of Variational Calculations 

In a general way one can ask the question, under what circum- 
8 

stances will the variational principle where 

I yield the same energy as the variation principle 6 3 S O  where 

and where we use the sa= set of trial func 

to write 

4 
ion $. 4 Us-ng ( 8 )  
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w e  have the answer: ' A  s u f f i c i e n t  condi t ion f o r  invariance t o  t h e  

gauge transformation u 
be iden t i ca l  t o  the  set . As an immediate consequence w e  have 

t h e  gauge invariance of t he  exact so lu t ion  ( the  s e t  \cc 

tu 
i s  t h a t  the set of t r i a l  funct ions u(c) 

r\l 

4 

includes"al1 

functions") and the  invariance of un res t r i c t ed  Hartree-Fock so lu t ion  

t o  proper gauge t r a n s f o m t i o n s  ( i f  ? is a determinant so is v\L 
N 

1 when is a proper gauge transformation ) ,  

Now le t  us suppose t h a t  f o r  some c l a s s  of gauge transformations,  

depending say  on a r b i t r a r y  parameters or  a r b i t r a r y  functions,  it i s  

not t r u e  t h a t  the  set u* i s  the  same as  the set . Then w e  
N tv 

may ask, among the  set of gauges under consideration, i s  the re  some 

optimal gauge i n  which t o  do the  ca lcu la t ion?  9 The answer which 

suggests i t s e l f  i s  - choose t h e  gauge such tkt small va r i a t ions  

around it y ie ld  no va r i a t ion  i n  E 
- 1  , i .e,  , requi re  a s o r t  of l o c a l  

or f i r s t  order gauge invariance wi th in  the  set of gauges under 

consideration. Thus w e  requi re  

(12) 

Y 4 
Here 9 is a t r i a l  funct ion,  and E t he  t r i a l  energy, The 

i s  then 
n,+ 

var i a t ion  i s  t o  be car r ied  out with E fixed. 

determined from TtO. 

This question has been discussed by many people, mainly i n  a semi- 

empirical  fashion. See f o r  example reference 7 .  

lo This condition ensures loca l  gauge invariance t o  a l l  orders i n  the  

Since usua l ly  one is  in t e re s t ed  i n  a t  most second order i n  f i e l d .  

t h e  f i e l d ,  a per turbat ion ana lys i s  of (12) would be appropriate.  

w i l l  not pursue t h i s  here ,  
We 
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i n  addi t ion  t o  the  usual  

I 
which follow from 6 f S O  

Another question now arises - t o  what ex ten t  i& the  r e s u l t  of * 
t h i s  procedure ac tua l ly  gauge invar ian t ,  i. e., independent of t he  A 
from which we s t a r t ed?  The answer follows d i r e c t l y  from the  

observation t h a t  (12) and (13) are equivalent t o  

where w e  vary both U6-d . From t h e  discussion at t h e  

beginning of t h i s  s ec t ion  i t  follows then that our r e s u l t s  w i l l  be 

invar ian t  t o  a f u r t h e r  gauge transformation 

N * 
i f  t he  set v' 9 is t h e  same as the  set u* 

IV. Connections with o ther  work. 

I n  t h i s  s ec t ion  w e  wish t o  make 

and r e s u l t s  proved by o ther  authors, 

Bersohn" - - - - -  and Karplus and Kolker 13 . .. 

connections 

p r inc ipa l ly  

between eq. (12) 

Rebane ; Das and 11 

T. K. Rebane, J ,E .T .P . ,  11, 694 (1960). 11 

l2 T. P. Das and R. Betsohn, Phys, Rev., 115, 895 (1959). 

References t o  e a r l i e r  works by other  authors  are a l s o  given 

i n  t h i s  paper. 

l3 M. Karplus and H. Kolker, J. Chem. Phys., E, 1263 (1963). 
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(A) Not surpr i s ing ly  eq. (12) i s  equivalent t o  a hyperv i r ia l  

14 theorem . Namely, from (8) and (9) one r ead i ly  der ives  

whence (12) becomes 

h, 

(B) We now r e s t r i c t  ourselves t o  s i t u a t i o n s  i n  which t h e  s e t  * 
c‘onsists of a s ing le  fixed ( i . e .  not t‘o be va r i ed ) ,  real funct ion 

and i n  which i s  loca l  so t h a t  H is  co r rec t ly  given by (7). 
P 

Thus (12) can be wr i t t en  

We now show t h a t  t h i s  i s  Rebane‘s v a r i a t i o n  pr inc ip le .  Namely, s ince  

is fixed 6r*e,Ho*g’) %-0 . Further  H1/ i s  a pure 
I 

imaginary Hermitian operator whence, if $0 

Thus (16) becomes 

i s  real, c ~ ~ 2 u I ~ ( ) I 0  

which is exact ly  Rebane‘s p r inc ip l e  (we may note, however, t h a t  i n  

Rebane’s discussion*o was assumed t o  be the  ground s t a t e  eigen- 

function of No ).  I n  words, w e  a r e  ins t ruc ted  t o  choose the  gauge 

i n  such a way as t o  minimize the  diamagnetic energy contr ibut ions 

l4 S, T. Epstein and J. 0. Hirschfelder,  Phys, Rev, E, 
- - - - -  

1495 (1961). 

See espec ia l ly  footnote 3, 
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/ 15 from H .  . 

1 
(C) Using the explicit form for H2 , arbitrary variation of 

A in (16) leads to a differential equation for A - Rebane's 
differential equation. 

based on (15) with 'k= 'Lo : Since 6A. is a function only 

An interesting alternative derivation can be 
.y 

and since further 1 "3 

operator it follows that (15) becomes 

is a pure imaginary Hermitian 

If this is to be true for arbitrary 

I 

ah it tmplk$ 

H,% = o  

which is Rebane's equation. 

. 
- - - - -  
l5 See also S. I. Chan and T. P. Das., J, Chem. Phys. 2, 1527 (1962). 

In connection with their discussion note, however, that with our 

approximation Z' C V ' ~ ~  *'%~b?.=r c*e,HaWt c~,HL G,) i.e. 
we have only a diamagnetic contribution from H, though from 
we get both paramagnetic and diamagnetic contributions (see 

below). 

8 

(D) 
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(D) Since H2 is a fixed operator (17) can a l s o  be wr i t t en  

Then using the  f a c t  t h a t  A 
one readi ly  f inds from (8) and (9) t h a t  

i s  a funct ion only of coordinates 

whence (18) becomes 

I f  one now Fssumes t h a t  

t he  va r i a t ion  pr inc ip le  used by Das and Bersohn 

N O  % SI FQ % then t h i s  i s  exac t ly  

12,16 . Namely, i f  

then (19) can be wr i t t en  

in t he  more fami l ia r  form 

which i s  the  form used by Das and Bersohn. As i s  w e l l  known i t  y i e lds  

an upper bound ( fo r  the  ground s t a t e )  t o  E‘”, t h e  second order 

contr ibut ion of H1 ( the  “paramagnetic” contr ibut ion) .  

However, although Das and Bersohn use (20) they do so with an 
- - a _ - -  

l6 The re la t ionship  of t he  Das and Bersohn approach t o  t h e  Rebane 

approach which w e  have found as a by-product of our inves t iga t ion  

has been pointed out before. See, f o r  example, S. K. Ghosh and 

S. K. Sinha, J. Chem, Phys. E, 737 (1962). 
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. 

"approximate" *, , one which is s t  an eigenfunction of 

they  do not 

. Thus 
HO p 

ca lcu la t e  an upper bound t o  but only some less 
1 7 '  w e l l  control led approximation t o  it . Also, note t h a t  i f  .bo is  

not  "exact" then (19) is not equivalent t o  ( 2 0 ) ,  and hence not 

equivalent  t o  Das and Bersohn. 

m o r n r r f 3 ~  
(E) For a general  40 , one which is not  V an eigenfunction of 

(19) is, however, exact ly  t h e  v a r i a t i o n  p r inc ip l e  proposed by Ho ' 
13 Karplus and Kolker . 

consider 

wi th  eigenvalue where i 8  l o c a l  CSee R. Sternheimer, 

Phys. Rev. - 96, 951 (1954)l . 

To see t h i s  w e  remark t h a t  w e  can always 

t o  be the  eigenfunction of a Hamiltonian dlo= T+bo 

Then s ince  c A,%3 = 

0 
- is equivalent  t o  a r e s u l t  of the  form (20) but with 

replaced by #@ and E a  respectively.  Thus what w e  would 

c a l c u l a t e  from (19) would be an upper bound t o  t h e  second order  

cont r ibu t ions  of HI for  t he  "atom" o r  llmolecule't defined by d 
0' 

This i s  not an upper bound f o r  t he  ac tua l  system but only some less 

w e l l  cont ro l led  approximation to  i t  . Indeed, i t  is exac t ly  t h e  

Ho and E 

18 

approximation suggested by Karplus and Kolker. 

l7 The s i t u a t i o n  is somewhat confused by t h e  f a c t  t h a t  as, Das and 

- - - - -  

Bersohn show, even with an approximate $0 

minimum property ( f o r  the  ground state). However, t he  point i s  
t h a t  t h i s  minimum is nor e") 
r e l a t i o n  t o  

(20) may w e l l  have a 

, nor need it have any p a r t i c u l a r  - p) 
.v' 

l8 Note, however, t h a t  t he  approximate t o t u l '  energy f; 2 an upper 

bound ( f o r  t he  ground s t a t e )  t o  the  exact tbtul' energy. 


